Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life.

نویسندگان

  • S B Jennifer Kan
  • Russell D Lewis
  • Kai Chen
  • Frances H Arnold
چکیده

Enzymes that catalyze carbon-silicon bond formation are unknown in nature, despite the natural abundance of both elements. Such enzymes would expand the catalytic repertoire of biology, enabling living systems to access chemical space previously only open to synthetic chemistry. We have discovered that heme proteins catalyze the formation of organosilicon compounds under physiological conditions via carbene insertion into silicon-hydrogen bonds. The reaction proceeds both in vitro and in vivo, accommodating a broad range of substrates with high chemo- and enantioselectivity. Using directed evolution, we enhanced the catalytic function of cytochrome c from Rhodothermus marinus to achieve more than 15-fold higher turnover than state-of-the-art synthetic catalysts. This carbon-silicon bond-forming biocatalyst offers an environmentally friendly and highly efficient route to producing enantiopure organosilicon molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redefining Biology via Enzyme Engineering

A TV series from the 1970s, ‘‘The Six Million Dollar Man,’’ imagines a former astronaut with bionic implants and superhuman strength acting as a secret agent for the government. Such enhancement of human abilities with artificial components (all at a reasonable price tag) might resonate with some of today’s scientists who are working on a more modest goal of augmenting the properties of cells a...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Density Functional Theory Studies of Defects in the (5,5) Silicon Nanotube

We have performed density functional theory (DFT) calculations to investigate the properties of defect in arepresentative armchair model of silicon nanotubes (SiNTs). To this aim, the structures of pristine and defective(5,5) SiNTs have been optimized and the properties such as bond lengths, total energies, binding energies,.formation energies, gap energies, and dipole moments have been evaluat...

متن کامل

Computation of the NMR Parameters of H-Capped (10,0) and (5,5) Single-Walled SiC Nanotubes

Geometrical structure, nuclear magnetic resonance (N1,1It) chemical shielding tensors, and chemical shiftsof silicon and carbon nucler are investigated for twn infinite size zigzag and armchair single-walled siliconcarbide nanotabes (SiCNTs). Geometrical structures of SieNTs, Sit bonds and bond angles of St and Cvertices in both zigzag and armchair nanotubes, Indicate that bond lengths are appr...

متن کامل

In Situ Formation of SiC/CNT Ceramic Nanocomposite by Phenolic Pyrolysis

In this research, using pyrolysis of phenolic resin in the presence of silicon particles, the SiC ceramic composite is formed. The samples were prepared by introducing 30, 35, 40, 45 and 50 wt% of Si particles to the phenolic resin. The samples were cured at 180°C then carbonized at 1100°C. The final carbonized C/Si composites are hot-pressed at 1500°C in inert atmosphere, which is more than th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 354 6315  شماره 

صفحات  -

تاریخ انتشار 2016